使用dataframe中drop函数删除行或列 - 知乎?

使用dataframe中drop函数删除行或列 - 知乎?

WebSep 13, 2024 · Python Drop multiple levels from a multi level column index in Pandas dataframe - To drop multiple levels from a multi-level column index, use the columns.droplevel() repeatedly. We have used the Multiindex.from_tuples() is used to create indexes column-wise.At first, create indexes column-wise −items = … WebDataFrame drop_level() The drop_level() method removes the specified index or column from a DataFrame/Series. This method returns a DataFrame/Series with the said … 3achour 3achar 2021 WebDec 24, 2024 · Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages … WebIn this example, we first create a Pandas DataFrame with three columns (‘A’, ‘B’, and ‘C’) and three rows. We then use the drop() method to remove the ‘B’ column from the dataframe. The axis=1 argument specifies that we want to drop the column axis, rather than the row axis. Finally, we print out the resulting dataframe to ... 3achoura 2022 WebDataFrame.droplevel(level, axis=0) [source] #. Return Series/DataFrame with requested index / column level (s) removed. Parameters. levelint, str, or list-like. If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of … pandas.DataFrame.dropna# DataFrame. dropna (*, axis = 0, how = _NoDefault.no_default, thresh = _NoDefault.no_default, subset = … pandas.DataFrame.drop# DataFrame. drop (labels = None, *, axis = 0, index = None, columns = None, level = None, inplace = False, errors = 'raise') … WebAug 19, 2024 · level. If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. int, str, or list-like. Required. axis. {0 or ‘index’, 1 or ‘columns’} Default Value: 0. Required. Returns: DataFrame.droplevel () axis bank offers on flipkart WebAug 5, 2024 · We can use the following syntax to drop rows with duplicate team names but keep the rows with the max values for points: #drop duplicate teams but keeps row with max points df_new = df.sort_values('points', ascending=False).drop_duplicates('team').sort_index() #view DataFrame print(df_new) …

Post Opinion